关于中国古诗词中的数学知识的文字专题页,提供各类与中国古诗词中的数学知识相关的句子数据。我们整理了与中国古诗词中的数学知识相关的大量文字资料,包括句子、语录、说说、名言、诗词、祝福、心语等。如果中国古诗词中的数学知识页面未能满足您的需求,请善用搜索找到更适合的句子。
数学知识
数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面由小编为大家整理的数学内容,希望可以帮助到大家!
在我们的概念中,“1“是一个最小的数字,它是整数数字的开始之数,是万数之首,是的,“1”是万数之首,它的地位也是最特殊的,下面,就和小编一起认识这个神奇的数字吧。
一、最小的数字。
古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10……集合在一起组成的。其中最小的是“1”,找不到最大的。如果你有兴趣的话,可以找一找。
二、没有最大的自然数。
也许你认为可以找到一个最大的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。这就说明在自然数家族中永远找不到最大的自然数。
三、“1”确实是自然数家族中最小的。
自然数是无限的,而“1”是自然数中最小的。有人提出异议,不同意“1”是最小自然数,说“0”比“1”小,“0”应该是最小的自然数。这是不对的,因为自然数指的是正整数,“0”是唯一的.非正非负的整数,因而“0”不属于自然数家族。“1”确实是自然数家族中最小的。
可别小看了这个最小的“1”,它是自然数的单位,是自然数中的第一代,人类最先认识的是“1”,有了“1”,才能得到1、2、3、4……
给你讲了万数之首“1”的特殊地位,所以,你千万别小看了它哦。
说起数学的作用,我们说上一天一夜也说不完,没有数学,我们生活也很不方便。那么,你知道数学除了日常生活中的简单运算,还可以做什么?能像警察那样破案吗?可以的,不信看看侠盗亚森罗宾是怎样用数学破案的。
巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与著名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。下面这则故事就是出自—位导游之口。
古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。
某日黄昏,怪人的四位互不相识的朋友阿列克赛、巴顿、克林、杜邦,几乎在同一时间先后来访。他们发现怪人已经被人杀害了,房间里面看起来很恐怖。当下四人大惊失色,争先恐后地拼命逃走。从脏乱不堪的狭窄楼梯(一次只能通过一人)跑下来,阿列克赛一步下2级台阶,巴顿一步下3级台阶,克林一步下4级台阶,而杜邦的本事最大,竟然一步能下5级台阶。
出事以后,侠盗亚森罗宾乔装成一名体面上流社会绅士,自告奋勇地前来侦破此案。他发现,同时印下四个人脚印的台阶仅在最高处和最低处。
为追查凶手,脚印混乱了就不好办,于是亚森罗宾特别重视只留有一个人脚印的台阶。后来的结果充分证明他的看法是正确无误的,最后终于抓获凶手,把他绳之以法。
现在要问你的是,通向钟楼的木楼梯上有多少级台阶只印下了一个人(不管是谁的)的脚印?
答案:
由于4的倍数肯定是2的倍数,所以克林的情况可以不必考虑,这就省掉了一个人,2,3,4,5的最小公倍数是60,而60又小于100,所以钟楼的木楼梯共有60级台阶。
阿列克赛的脚印落在第2,4,6,8,10,12,…,58,60级台阶上,但应排除2×3及其倍数各级阶梯;同理,还需要排除4的倍数的各级阶梯和5的倍数各级阶梯。于是剩下第2,14,22,26,34,38,46,58共八级。其一般形式为2×p(其中p=1,以及除去2、3、5以外的素数)。
巴顿的脚印落在第3,6,9,12,…,60级阶梯上,但应排除混有别人脚印的第6,12,15,18,……级阶梯,剩下第3,9,2l,27,33,39,51,57,共八级。
前面已经说过克林的情况可以不考虑了,最后再来看一下杜邦情况。很明显,只留下他一个人脚印的阶梯是第5,25,35,55级,共四级。
所以,问题的答案是8+8+4=20级。
由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。
在中学数学中,常见的数学符号有以下六种:
一、数量符号如3/4,圆周率π;a,x等。
二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。
三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“∥”是“*行符号”,读作“*行于”;“⊥”是“垂直符号”,读作“垂直于”等。
四、结合符号如小括号( ),中括号[ ],大括号{ }。
五、性质符号如正号(+)、负号(-),绝对值符号(||)。
六、简写符号如三角形(△),圆(⊙)等。
这些符号的产生,一是来源于象形,实际上是缩小的图形。如*行符号“∥”是两条*行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{ }”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的*方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。
数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。
这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学*的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。
所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。
数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度──*数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。
数学知识点
在年少学*的日子里,大家最熟悉的就是知识点吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。掌握知识点是我们提高成绩的关键!下面是小编为大家收集的数学知识点,仅供参考,大家一起来看看吧。
知识点
(1)单次相遇问题
1、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
2、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
②在一定时间内,两个运动物体相遇;
3、解题公式:相遇时间=总路程÷速度和
总路程=速度和×相遇时间
(2)单次追及问题
1、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
2、特征:①两个运动的物体一般同地不同时(或同时不同地)出发作同向运动;
②在后面的行进速度快些,前面的行进速度慢些;
③在一定时间内,后面的追上前面的;
3、解题公式:追及时间=追及路程÷速度差
追及路程=速度差×追及时间
(3)多次相遇问题
在这里,我们只讲直线型两地往返的相遇问题,以后我们会专门开辟一个专题来讲环形相遇、追击问题--环形跑道,这里牵涉到的多次追击问题比较多。
我们把第一次相遇走的路程和看成是一个全程,那么到第二次相遇时的路程和就是3个全程,第三次相遇时的路程和就是5个全程,……,第n次相遇时的路程和就是2n-1个全程。而由于运动物体的速度是不变的,所以每个全程花的时间一样,抓住这两点,我们就可以解决所有的多次相遇问题!
(一)比的基本概念
1.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
2.比值通常用分数、小数和整数表示。
3.比的后项不能为0。
4.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
5.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(二)求比值
求比值:用比的前项除以比的后项
(三)化简比
化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
(四)比的应用
1.比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?
例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?
题目解析:60人就是男女生人数的和。
解题思路:
第一步求每份:60÷(5+7)=5人
第二步求男女生:男生:5×5=25人女生:5×7=35人。
2.比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?
例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?
题目解析:“男生25人”就是其中的一个数量。
解题思路:
第一步求每份:25÷5=5人
第二步求女生:女生:5×7=35人。全班:25+35=60人
3.比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?
例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?
4.要求量=已知量×要求量份数/已知量份数
5.比在几何里的运用:
(1)已知长方形的周长,长和宽的比是a:b。求长和宽、面积。
长=周长÷2×a/(a+b)
宽=周长÷2×b/(a+b)
面积=长×宽
植物中隐藏着的数学知识
数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。下面是小编收集整理的植物中隐藏着的数学知识,仅供参考,大家一起来看看吧。
(1)向日葵种子的排列方式就是一种典型的数学模式。仔细观察向日葵花盘,你就会发现两组螺旋线,一组顺时针方向盘旋,另一组则逆时针方向盘旋,并且彼此相嵌。虽然在不同的向日葵品种中,种子顺、逆时针方向和螺旋线的数量有所不同,但都不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波纳契数列中相邻的两个数。植物学家发现,在自然界中,这两种螺旋结构只会以某些“神奇”的组合同时出现。
比如,21个顺时针,34个逆时针,或34个顺时针,55个逆时针。有趣的是,这些数字属于一个特定的数字列:斐波纳契数列,即1,2,3,5,8,13,21,34等,每个数都是前面两数之和。不仅葵花子粒子的排列、还有雏菊,梨树抽出的新枝,以及松果、蔷薇花、蓟叶等都遵循着这一自然法则。
(2)如果你仔细地观察一下雏菊,你会发现雏菊小菊花花盘的蜗形排列中,也有类似的数学模式,只不过数字略小一些,向右转的有21条,向左转的34条。雏菊花冠排列的螺旋花序中,小花互以137度30分的夹角排列,这个精巧的角度可以确保雏菊茎杆上每一枚花瓣都能接受最大量的阳光照射。
(3)在仙人掌的结构中有这一数列的.特征。研究人员分析了仙人掌的形状、叶片厚度和一系列控制仙人掌情况的各种因素,发现仙人掌的斐波纳契数列结构特征能让仙人掌最大限度地减少能量消耗,适应其在干旱沙漠的生长环境。
(4)菠萝果实上的菱形鳞片,一行行排列起来,8行向左倾斜,13行向右倾斜。
(5)挪威云杉的球果在一个方向上有3行鳞片,在另一个方向上有5行鳞片。
(6)常见的落叶松是一种针叶树,其松果上的鳞片在两个方向上各排成5行和8行。
(7)美国松的松果鳞片则在两个方向上各排成3行和5行。
(9)树的分枝:如果1棵树每年都在生长,第2年有2个分枝,通常第3年就有3个分枝,第4年5个,第5年8个,……,每年的分枝数都是斐波纳契数。
植物王国的数学特性既优美又神秘,如,花瓣的数目很多是符合斐波那契数列的,而且花瓣对称地排列在花朵边缘,叶子沿着植物茎干相互叠起。有些植物的种子是圆的,也有一些是刺状的,伞状花絮粘带着其他植物种子在微风中随处飘荡。还有许多植物都对螺旋形几何图形具有一种特殊的偏好:像向日葵籽盘上相互交叉的奇特螺线,从松果到菠萝的茎、皮和子实都显示了奇特的螺旋规则,这些规则在数学上极为精确的。所有这一切向我们展示了许多美丽的数学模式,这些植物形态的数学特性的确是让人感到惊叹,吸引很多人去探究其中的原因。
如果是遗传决定了花朵的花瓣数和松果的鳞片数,那么为什么斐波纳契数列会与此如此的巧合?植物为什么会选择这样的形态和怎么能“知道”斐波纳契这个深奥的序列呢?科学家为此苦苦研究和探索了几个世纪。到目前为止最好的解释是1992年由两位法国数学家伊夫·库代和斯特凡尼·杜阿迪提出来的。他们证明,斐波纳契数列使花朵顶端的种子数最多。向日葵等植物在生长过程中,只有选择这种数学模式,花盘上种子的分布才最为有效,花盘也变得最坚实壮实,产生后代的几率也最高。这也是动植物在大自然中长期适应和进化的结果。
“大自然这本书是用数学语言来书写的。”伽利略曾经说过。
记得一次在扬州游园,听导游讲到:“竹子也分雌雄。”怎么,不会是我的耳朵听错了吧?我连忙问导游,她指着一棵竹子说:“竹子的雌雄标致就在竹节生枝和竹笋上。雌竹出笋,雄竹不出。大家看,这棵竹子的第一分枝处,是两枝,它是雌竹;再看这一棵,这第一分枝处是一枝,则为雄竹。游客们很是好奇,仔细观察,竹子的确有生发一枝、两枝或者两枝以上的。
带着好奇,马上用手机上网,果然查到了。本草纲目》云:“竹有雄雌,但看根上第一枝,双生者必雌也,乃有笋。”大自然真是神奇啊!
其实,在植物界还有更为神奇的现象呢?记得,期末考试前,有一位学生问我一道找规律的题,即1,2,3,5,8, , 。我看了几眼,给孩子说:1+2就是第三个数3,2+3就是第四个数5,以此类推,5+8=13,8+13=21。后来,我从数学老师那里得知,1,2,3,5,8,13,21,34,55等是斐波那契数列,也就是黄金分割线,规律是每个数都是前面两个数的和。
前两天,我在看报时,偶然读到了植物对斐波那契数列情有独钟,很是心仪。如,大家熟知的向日葵种子的排列方式,就是一种典型的数学模式。向日葵的花盘有两组螺旋线,一组顺时针,一组逆时针,并且彼此相嵌。无论哪种向日葵品种,种子的顺、逆时针方向和螺旋线的数量有所不同,但都不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波那契数列中相邻的两个数。
真是这么回事?我走在买菜的路上,眼睛左右搜索,有了,路边卖水果的摊位上就有葵花盘。走上前,拿起一个小的,仔细观察,又在心里默默数着,果不其然。再拿一个稍大点的,与小的一样。最后挑了个大个的,买下后一边走,一边数,真的是89和144。
植物为什么会选择这样的形态呢?又怎么能“知道”斐波那契数列这个深奥的序列呢?原来,这种数列使植物花朵顶端的种子数最多。向日葵只有选择这种数学模式,花盘上种子的分布才最为有效,花盘也变得更为坚实壮实,产生后代的几率也最高。
原来是这样啊!看起来,植物也是在长期的适应和进化中慢慢成这样的。另外,松果、雏菊、蔷薇花、蓟叶等都遵循这一自然法则。
植物与数字竟是如此亲密的关系啊!我不得不说,在植物界伽利略的“大自然这本书是用数学语言来书写的。”这一说法得到了佐证啊!
自然界就是一部百科全书,只要走进自然大课堂,仔细观察,用耳聆听,定能有所发现,有所收获的。
1、到处皆诗境,随时有物华。--宋·张道洽《岭梅》
2、春城无处不飞花。--唐朝·韩鸿《寒食》
3、折得一枝香在手,人间应未有。--宋·王安石《甘露歌》
4、绿杨烟外晓寒轻,红杏枝头春意闹。--宋·宋祁《玉楼春》
5、春色满园关不住,一枝红杏出墙来。--宋·叶绍翁《游园不值》
6、等闲识得东风面,万紫千红总是春。--宋·朱熹《春日》
7、日出江花红胜火,春来江水绿如蓝。--唐·白居易《忆江南》
8、浓绿万枝红一点,动人春色不须多。--宋·王安石《咏石榴花》
9、小楼一夜听春雨,深巷明朝卖杏花。--宋·陆游《临安春雨初霁》
10、疏影横斜水清浅,暗香浮动月黄昏。--宋·林逋《山园小梅》
11、城中桃李愁风雨,春在溪头荠菜花。--宋·辛弃疾《鹧鸪天·代人赋》
12、春风不解禁杨花,蒙蒙乱扑行人面。--宋·晏殊《踏莎行》
13、阳春二三月,草与水同色。--晋·乐府古辞《孟珠》
14、江南二月多芳草,春在蒙蒙细雨中。--宋·释仲殊《绝句》
15、接天莲叶无穷碧,映日荷花别样红。--宋·杨万里《晓出净慈寺送林子方》
16、无可奈何花落去,似曾相识燕归来。--宋·晏殊《浣溪沙》
17、不是花中偏爱菊,此花开尽更无花。--唐朝·元稹《菊花》
18、林间新绿一重重,小蕾深藏数点红。--金·元好问《同儿辈赋未开海棠》
19、春风又绿江南岸,明月何时照我还?--宋·王安石《泊船瓜洲》
20、江南可采莲,莲叶何田田!--汉乐府民歌《江南》
21、小荷才露尖尖角,早有蜻蜓立上头。--宋·杨万里《小池》
22、叶上初阳干宿雨,水面清圆,一一风荷举。--宋·周邦彦《苏幕遮》
23、不知细叶谁裁出,二月春风似剪刀。--唐·贺知章《咏柳》
24、停车坐爱枫林晚,霜叶红于二月花。--唐·杜牧《山行》
25、天涯何处无芳草。--宋·苏轼《蝶恋花》
26、野火烧不尽,春风吹又生!--唐·白居易《赋得古原草送别》
27、天街小雨润如酥,草色遥看*却无。--唐·韩愈《初春小雨》
28、春眠不觉晓,处处闻啼鸟。夜来风雨声,花落知多少!--唐·孟浩然《春晓》
29、蝉噪林逾静,鸟鸣山更幽。--南朝·梁·王籍《入若耶溪》
30、江碧鸟逾白,山青花欲然。--唐·杜甫《绝句二首》
31、竹外桃花三两枝,春江水暖鸭先知。--宋·苏轼《惠崇春江晚景》
32、乱花渐欲迷人眼,浅草才能没马蹄。--唐·白居易《钱塘湖春行》
33、穿花蛱蝶深深见,点水蜻蜓款款飞。--唐·杜甫《曲江二首》
34、晴空一鹤排云上,便引诗情到碧宵。--唐·刘禹锡《秋词》
35、千里莺啼绿映红,水村山郭酒旗风。--唐·杜牧《江南春绝句》
36、困人天气*清明。--宋·苏轼《浣溪沙》
37、燕子来时新社,梨花落后清明。--宋·晏殊《破阵子》
38、清明时节雨纷纷,路上行人欲断魂。--唐·杜牧《清明》
39、有时三点两点雨,到处十枝五枝花--唐·*甫《寒食二首》
40、更能销几番风雨,匆匆春又归去。--宋·辛弃疾《摸鱼儿》
41、试问卷帘人,却道海棠依旧。知否?知否?应是绿肥红瘦。--宋·李清照《如梦令》
42、黄梅时节家家雨,青草池塘处处蛙。--宋·赵师秀《有约》
43、天阶夜色凉如水,卧看牵牛织女星。--唐·杜牧《秋夕》
44、秋风吹渭水,落叶满长安。--唐朝·贾岛《忆江上吴处士》
45、树树皆秋色,山山唯落晖。--唐·王绩《野望》
46、一年好景君须记,最是橙黄桔绿时。--宋·苏轼《赠刘景文》
47、最是秋风管闲事,红他枫叶白人头。--清·赵翼《野步》
48、无边落木萧萧下,不尽长江滚滚来。--唐·杜甫《登高》
49、满城风雨*重阳。--宋·潘大临《断句》
50、腊后花期知渐*,寒梅已作东风信。--宋·晏殊《蝶恋花》
51、海日生残夜,江春入旧年。--唐·王湾《次北固山下》
导语:诗中有画,画中有诗!完美的意境,全在中国最精美的古诗词里!以下是意境最美的中国古诗词:《画堂春》(纳兰容若)《一剪梅.舟过吴江》(蒋捷)《青玉案.元夕》(辛弃疾)《雁丘词》(元好问)《江城子》(苏轼)《一剪梅》(唐寅)《苏幕遮》(周邦彦)《系腰裙》(张先)《虞美人》(蒋捷)《钗头凤》(陆游)《钗头凤》(唐婉)《苏幕遮》(范仲淹)
意境最美的中国古诗词
《画堂春》
(纳兰容若)
一生一代一双人,争教两处销魂?
相思相望不相亲,天为谁春。
浆向蓝桥易取,药成碧海难奔,
若容相仿日牛津,相对忘贫。
《一剪梅.舟过吴江》
(蒋捷)
一片春愁待酒浇,江上舟摇,楼上帘招。
秋娘渡与泰娘桥,风去飘飘,雨又潇潇。
何日归家洗客袍?银字笙调,心字香烧。
流光容易把人抛,红了樱桃,绿了芭蕉。
《青玉案.元夕》
(辛弃疾)
东风夜放花千树,更吹落,星如雨。
宝马雕车香满路,凤箫声动,玉壶光转,一夜鱼龙舞。
蛾儿雪柳黄金缕,笑语盈盈暗香去。
众里寻他千百度,蓦然回首,那人却在,灯火阑珊处
《雁丘词》
(元好问)
问世间,情是何物,直教生死相许?
天南地北双飞客,老翅几回寒暑。
欢乐趣,离别苦,就中更有痴儿女。
君应有语,渺万里层云,千山暮雪,只影向谁去。
横汾路,寂寞当年萧鼓,荒烟依旧*楚。
招魂楚些何嗟及,山鬼喑啼风雨。
天也妒,未信于,莺儿燕子俱黄土。千秋万古。
为留待骚人,狂歌痛饮,来访雁丘处。
《江城子》
(苏轼)
十年生死两茫茫,不思量,自难忘。
千里孤坟,无处话凄凉。
纵使相逢应不识,尘满面,鬓如霜。
夜来幽梦忽还乡,小轩窗,正梳妆。
相顾无言,惟有泪千行。
料得年年肠断处,明月夜,短松冈。
《一剪梅》
(唐寅)
雨打梨花深闭门。忘了青春,误了青春。
赏心乐事共谁论?花下销魂,月下销魂。
愁聚眉峰尽日颦。千点啼痕,万点啼痕。
晓看天色暮看云。行也思君,坐也思君!
《苏幕遮》
(周邦彦)
燎沉香,消溽暑。鸟雀呼晴,侵晓窥檐语。
叶上初阳干宿雨,水面清圆,一一风荷举。
故乡遥,何日去?家住吴门,久坐长安旅。
五月渔郎相忆否?小楫轻舟,梦如芙蓉浦。
《系腰裙》
中国古现诗词的常识
爱国诗人陆游是我国历史上留下诗篇最多的诗人,流传诗有九千多首篇。
古代最杰出的豪放派词人是北宋的苏轼;
古代最杰出的女词人是南宋的李清照;
古代最著名的爱国词人是南宋的辛弃疾;
古代最伟大浪漫主义诗人是唐代的李白;
古代最伟大现实主义诗人是唐代的杜甫;
古代写诗最多的爱国诗人是南宋的陆游;
古代最早写农民起义的长篇小说是元末明初施耐庵的《水浒传》;
古代最伟大的现实主义长篇小说是清代曹雪芹的《红楼梦》;
古代最杰出的长篇讽刺小说是清代吴敬梓的《儒林外史》;
古代最杰出的.文言短篇小说集是清代蒲松龄的《聊斋志异》;
古代最早的语录体散文是《论语》;
古代最早的记事详备的编年体史书是《左传》;
古代最早的纪传体通史是《史记》;
古代最杰出的铭文是唐代刘禹锡的《陋室铭》;
现代最伟大的文学家是鲁迅;现代最杰出的长篇小说是茅盾的《子夜》;
现代最有影响的短篇小说集是鲁迅的《呐喊》。
简易方程的数学知识点
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。以下是小编精心整理的简易方程的数学知识点,仅供参考,欢迎大家阅读。
1、在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a,a读作a的*方。2a表示a+a
3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天**衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。、
5、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
6、所有的方程都是等式,但等式不一定都是方程。
7、方程的检验过程:方程左边=……
8、方程的解是一个数;
解方程式一个计算过程。=方程右边
所以,X=…是方程的解。
1.含有字母的式子里,字母中间的乘号可以记作,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
2.aa可以写作aa或a,a读作a的*方。2a表示a+a
3.方程:含有未知数的等式称为方程。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
4.解方程原理:天**衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
5.10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数因数 一个因数=积另一个因数 除法:商=被除数除数 被除数=商除数 除数=被除数商
6.所有的方程都是等式,但等式不一定都是等式。
1、方程的`意义
含有未知数的等式,叫做方程。
2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
例4用含有字母的式子表示下面的数量关系
(1)的7倍;(2)的5倍加上6;(3)5减的差除以3;
(4)200减5个;(5)比7个多2的数。
例9要修一段公路,*均每天修米,修了6天,还剩下米。
(1)用含有字母的式子表示这段公路有多少米;
(2)根据这个式子,分别求等于50,等于200时,公路长多少米
例11某个数与9的和的12倍等于156,求这个数是多少。
例12王晰买了2支钢笔和5支圆珠笔,共付17元。一支钢笔的价格是一支圆珠笔的40倍,求每支钢笔多少钱,每支圆珠笔多少钱?
简易方程
用字母表示数
用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。
用字母表示数的注意事项
图形数学知识点
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面为大家带来了图形数学知识点,欢迎大家参考!
一、认识图形
图形分类
1、按照不同的标准给已学过的图形进行分类:
立体图形
学过的图形圆(曲线围成)
*面图形三角形(3条边)
三角形、四边形四边形*行四边形
(线段围成)(4条边)长方形正方形
①按*面图形和立体图形分;
②把*面图形按图形是否由线段围成来分,分为两大类。一类是由曲线围成的,一类是由线段围成的。
③按图形的边数来分。
2、*行四边形和三角形的性质:三角形具有稳定性,*行四边形具有易变形(不稳定性)的'特点。
三角形分类
1、把三角形按照不同的标准分类,并说明分类依据。
(1)按角分:直角三角形、锐角三角形、钝角三角形。
①三个角都是锐角的三角形是锐角三角形。
②有一个角是直角的三角形是直角三角形。
③有一个角是钝角的三角形是钝角三角形。
(2)按边分:等腰三角形、等边三角形、任意三角形。
①有两条边相等的三角形是等腰三角形。
②三条边都相等的三角形是等边三角形。
2、通过分类发现:等腰三角形和等边三角形的关系:等边三角形是特殊的等腰三角形。
三角形内角和、三角形边的关系
1、任意一个三角形内角和等于180度。
2、三角形任意两边之和大于第三边。
3、能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。
四边形的分类
1、由四条线段围成的封闭图形叫作四边形。四边形中有两组对边分别*行的四边形是*行四边形,只由一组对边*行的四边形是梯形。
2、长方形、正方形是特殊的*行四边形。正方形是特殊的长方形。
3、正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。
①正方形有4条对称轴。
②长方形有2条对称轴。菱形有2条对称轴。
③等腰梯形有1条对称轴。
④等边三角形有3条对称轴。
⑤圆有无数条对称轴。
图案欣赏
1、通过欣赏图案,体会图形排列的规律,感受图案的美。
2、利用对称、*移和旋转,设计简单的图案。
设计步骤:①制作基本图形。②将基本图形*移、旋转、对称,形成一幅图案。③涂上喜欢的颜色。(涂色要突出图案的规律性)
数图形中的学问
1、从同一点引出n个基本角,那么图中所有角的个数为n+(n-1)+…+2+1=n(n+1)÷2。
2、从同一点引出n个基本三角形,那么图中所有三角形的个数为n+(n-1)+…+2+1=n(n+1)÷2。
二、观察物体
1、观察位置由低到高变化,所观察到物体的画面也发生相应变化。观察物体的时候,站得越高,看到的物体越完整。
2、观察位置由远及*变化,所观察景物的范围也相应变化。观察物体的时候,距离越*,观察到的景物越大,观察景物范围越小;距离越远,观察到的景物越小,观察景物范围越大。
3、识别和判断打拍摄地点与照片中的对应关系:可以假设自己在拍摄地点处,根据图中景物特点,联系自己的生活经验,想想究竟能看到什么,再下结论。判断照片拍摄的先后顺序时可以假设自己随着拍摄者的行走路线游览,想象自己先看到哪些景物,再看到哪些景物,从而判断出照片拍摄的先后顺序。
“概率与统计”知识
游戏公*
1、判断游戏规则是否公*,要看代表双方的事件发生的可能性是否相等。如果相等,则游戏规则公*;否则,游戏规则就不公*。
高三数学知识点的特点
仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找到你真正的位置。下面是小编整理的高三数学知识点的特点,希望你喜欢。
1、稳定
1.1结构稳定.
题量延续10+7+5的模式,题型相对稳定,考试范围与浙江省的《考试说明》要求一致,不超出《浙江省教学指导意见》.
1.2命题理念稳定.
全面考查“双基”.从知识点分布看,试题覆盖面很大,在新课标所要求的各知识系列中基本上都有试题,考查的知识、技能、方法不偏不怪,一些试题明显取自于教材,对中学数学的教与学具有很好的导向作用;
分步设问、分层把关.试题难度依选择题、填空题、解答题的顺序依次递增,各类题中都是起步容易逐层推进.五道解答题仍设10小问,通过分步设问,入口宽、上手易、深入难,使不同程度的考生得到相应的分数,既体现对考生的人文关怀,又会有很好的区分度.
重点突出.支撑中学数学知识体系的重点知识重点考查,如理科试题函数部分占到约22分,三角函数19分,立体几何25分,解析几何24分,数列重新回到解答题,占14分.涉及函数、椭圆、抛物线等核心知识点从不同角度重点考查。
2、*实
淡化技巧,注重通性通法.
如理科第(19)题利用方程求解基本量,利用基本公式求和,然后通过比差(商)比较大小,基本公式;
考一点想,少考一点算.
考思维的特点更加突出,体现出考数学,核心就是考查思维能力.如理科第(10),思维层次不同,解题所需时间、正确率就有差别.
凸显数学思想方法的考查.
寓思想方法的考查于基础知识的考查之中,贯穿在各类题型的考查之中,重要的数学思想方法重点考查,如数形结合思想(理科第(5)、(8)、(11)、(14)、(17)、等)、化归思想(如理科第(6)、(9)、(10)、(16)、(18)、(19)、(21)、(22)等),函数与方程思想(理科第(5)、(8)、(10)、(11)、(13)、(15)、(17)、(18)、(19)、(21)、(22),分类讨论思想(理科第(9)、(10)、(22))等;
突出能力立意.
试题突出考查阅读理解能力、计算能力、空间想象能力、思维能力等,很多试题都有多种解题途径,解题的切入点不同,运用的思想方法不同,体现出不同的思维水*,从而付出的时间与得到的分数产生差异,如理科第(10)题,第(17)题,第(21)题,第(22)题等都提出了很高的能力要求.
3、创新
注重数学本质的理解
如理科第6题,考查恒等变换,第8题考查数形结合、方程思想,理科第9题考查两个基本原理。
注重思维灵活性
如第8题把线段比距离转化为坐标问题,第9题正难则反,第10题特殊验证关系比较,第16题整体凑配,第17题猜想与验证结合等,试题淡中见隽,突出数学是思维的学科的特色。
不断寻求知识的.新组合。
如理科3题由三视图到直观图,第5题加入整点问题,第12题把不等式、函数变化快慢、程序框图联系在一起,第8题综合椭圆、双曲线、圆、直线(渐*线),第10题综合集合、函数、方程、不等式等。
进一步加大文理差异.
鉴于文理科学生数学水*的实际差异,以及未来发展的需要,对文理科试题的*衡一直在不断的探索改进之中.从第一题即是不同的试题,共有11道不同,7到“姊妹题”,文、理共用试题仅为4道题,其中三道选择题,一道填空题,是*年来差异分数最大的一年;
加大创新意识和继续学*的潜能的考查.
文、理都继续保持一贯的对创新意识、学*潜能的考查,对符号语言、文字语言的阅读理解能力进行考查,重在甄别继续学*的潜能,虽然没有直接出现考查类比、归纳的问题,但多道试题要利用归纳、猜想与严密的论证相结合,要求更高。
关于初中数学知识点归纳之有理数的分类
人教版七年级数学主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容,下面是小编收集整理的关于初中数学知识点归纳之有理数的分类,希望对你有帮助。
初中数学知识点总结:*面直角坐标系。
下面是对*面直角坐标系的内容学*,希望同学们很好的掌握下面的内容。
*面直角坐标系
*面直角坐标系:在*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。
水*的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为*面直角坐标系的原点。
*面直角坐标系的要素:①在同一*面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对*面直角坐标系知识的讲解学*,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:*面直角坐标系的构成
对于*面直角坐标系的构成内容,下面我们一起来学*哦。
*面直角坐标系的构成
在同一个*面上互相垂直且有公共原点的两条数轴构成*面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水*位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水*的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对*面直角坐标系的构成知识的讲解学*,希望同学们对上面的内容都能很好的掌握,同学们认真学*吧。
初中数学知识点:点的'坐标的性质
下面是对数学中点的坐标的性质知识学*,同学们认真看看哦。
点的坐标的性质
建立了*面直角坐标系后,对于坐标系*面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标*面内确定它所表示的一个点。
对于*面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学*,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学*,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学*,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学*。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学*,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学*很好的帮助。
中国古诗词中的数学知识 中国古诗词中的数学知识竞赛 古诗词中的数学知识 小学古诗词中的数学知识 古诗中的数学知识心得 蕴含数学知识的古诗词 古诗里的数学知识 数学知识有关的古诗 中国古诗词里的力学知识 用数学知识写祝福语 蜜含着数学知识的古诗 关于数学知识点的古诗 中国古诗词中的物理知识 中国古诗词的知识竞赛 含有数学知识的春节古诗 中国古诗中的数学 关于中国古诗词的韵律知识 中国古诗的知识与资料 中国古诗词中的地理知识题目 关于中国古代古诗的知识 中国古诗中的数学意境原文 中国最早的古诗知识 中国古诗词中的数字美 古诗词中的声学知识 蕴含数学几何知识的古诗 你知道的中国古诗词 中国古诗词的总数量 古诗词中的解剖学知识 古诗词中涉及的化学知识 数学名言中国
初一数学知识点:分式 简易方程的数学知识点 数学知识竞赛方案 关于小学升初中数学知识点大全 数学知识 图形数学知识点 高三数学知识点的特点 关于初中数学知识点归纳之有理数的分类 高等数学知识点梳理 数学知识点 关于高三数学知识点 关于因数与倍数的数学知识点 数学中考的知识点 用字母表示数的数学知识点 关于角与几何数学知识点 小学数学知识点 植物中隐藏着的数学知识 数学小报数学知识的内容 大学趣味数学知识竞赛题 中国古诗词名言及翻译 古诗文名句经典(中国古诗词名句) 赞美古诗词的魅力(对中国古诗词的赞美) 中国古诗词名句精选 关于中国古诗词的古诗119句 意境最美的中国古诗词 中国古代爱情古诗词 意境最美的中国古诗词 中国古现诗词的常识 意境最美的中国古诗词 数学定理情话 用数学知识编句情话
坚持读书的古诗词 两首同题材的古诗 古诗里的女人称君还是卿 有谐字的古诗 自己写的古诗关于比赛 古诗中的猫 关于书法的资料和古诗 古诗综艺节目首播的开场白 使人痛苦的古诗 苏轼有关祖国风光的古诗 古诗与现代诗歌的不同特点 奉献的古诗大全 带菱的古诗词 含贬义的古诗 古诗无题带拼音的 含路的简单古诗词 批评负心的古诗 古诗小学生写的 他人关怀的古诗 写自己的古诗词感恩 有关古诗的发展解说 带年的古诗大全 关于月亮的长古诗大全 形容很着急的人的古诗 端午最有名的古诗 含有阳光的古诗 适合初一生背诵的古诗 关于写牛羊的古诗 写兰陵王的古诗 带梦和琳字的古诗词 写职场的古诗词